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ABSTRACT

We extend the method of algebraic patching due to Haran-Jarden-Völklein

from complete absolute valued fields to complete domains. We apply the

extended method to reprove a result of Lefcourt obtained by formal patch-

ing – every finite group is regularly realizable over the quotient field of a

complete domain.

Introduction

Consider a field K and let E = K(x) be the field of rational functions over K.

If K is the quotient field of an integral domain D complete at a maximal ideal

and K 6= D, then every finite group occurs as a Galois group over E. This was

first proved by Harbater in [Ha]. Harbater’s proof is phrased in the language of

formal geometry. Serre [Se, Theorem 8.4.6] and Liu [Li] translated that proof to

the language of rigid analytic geometry in the case where K is complete under

a nonarchimedean absolute value. That case was treated again by Haran and

Völklein [HV] who gave a simple self-contained algebraic proof using “algebraic

patching”.
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Building on Serre-Liu, Pop proved that if K is an ample field (in particular,

if K is a complete valued field), then every constant finite split embedding

problem over K is regularly solvable (in particular, every finite group can be

realized over K(x)). Extending the method of algebraic patching, Haran and

Jarden [HJ] gave a self contained algebraic proof of Pop’s theorem.

Lefcourt generalized the result of [Ha] in another direction. Starting from

an integral domain D complete at a prime ideal p, she used formal algebraic

geometry to prove that every finite group occurs as a Galois group over K(x).

Note that if K is ample, then this result follows from [Po] or [HJ]. However, it

is unknown whether all of the fields Quot(D) with D as above are ample, and

one suspects that they are not.

The goal of this work is to generalize “algebraic patching” from complete

fields to complete domains. As an application, we present a simple algebraic

proof of Lefcourt’s result. Another application will be given elsewhere.

The basic idea is as follows. Suppose we wish to realize a finite group G as

a Galois group over a field E assuming we already know how to realize gen-

erating subgroups G1, . . . , Gk of G (e.g. cyclic groups) by Galois extensions

F1, . . . , Fk. In the case where K is complete under a nontrivial absolute value,

Haran–Jarden–Völklein choose field extensions Q1, . . . , Qk of F1, . . . , Fk satisfy-

ing “patching conditions”, induce them to algebras N1, . . . , Nk and prove that

F =
⋂k

i=1 Ni is a Galois extension of E with Gal(F/E) ∼= G. Each of the fields

Qi is the quotient field of a ring of convergent power series in several variables.

In our more general case, Q1, . . . , Qk are the localizations of rings of convergent

power series in several variables over D. The proof that the rings Q1, . . . , Qk

satisfy appropriate “patching conditions” becomes more difficult and uses sev-

eral more tricks on top of those that were used in the former case. This leads

to our main result.

Main Theorem: Let D be a complete domain with respect to a non-trivial ab-

solute value. Then every finite group occurs as a Galois group over Quot(D[x]).

Technical reasons force us to assume extra conditions on D. Fortunately,

simple Galois theoretical arguments reduce the proof of the main theorem to

three special cases. In two of them, the quotient fields of the rings are complete,

hence the theorem follows from [HV]. In the third case, D is the ring Z[[x]] of

formal power series over the integers. This ring does not satisfy the extra
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conditions, however Z[[x]][x−1] does, and has the same quotient field as Z[[x]].

This concludes the proof of the main theorem.

Finally, note that Lefcourt’s result can also be reduced to the case of

Quot(Z[[x]]). Thus, our main theorem is equivalent to that of Lefcourt.

Acknowledgment. I would like to thank Prof. Dan Haran for his guidance

and teaching while working on this research. I also thank Prof. Moshe Jarden

for his course notes [Ja]. These notes helped me in several important points of

my work.

1. Algebraic Patching

The works [HV, §3] and [HJ, §1] develop a general setup in which given realiza-

tions of generating subgroups of a group G over a given field can be “patched

together” into a realization of G over the same field. In this section we adjust

this setup for our more general situation. The main difference is that we replace

the fields Qi in the patching data of [HV] and [HJ] by rings.

Definition 1.1: Let I be a finite set with |I| ≥ 2. A generalized patching

data

(1) E = (E, Fi, Qi, Ω; Gi, G)i∈I

consists of fields E ⊆ Fi ⊆ Ω, integral domains Qi ⊆ Ω, and finite groups

Gi ≤ G, i ∈ I, satisfying the following conditions:

(2a) Fi/E is a Galois extension with Galois group Gi, i ∈ I.

(2b) Fi ⊆ Q′
i, where Q′

i =
⋂

j 6=i Qj , i ∈ I.

(2c) Fi ∩ Quot(Qi) = E, i ∈ I.

(2d) G = 〈Gi | i ∈ I〉.

(2e)
⋂

i∈I Qi = E.

In the rest of this section we prove that if E satisfies an extra condition called

(COM), then G occurs over E as a Galois group.

Definition 1.2: Let Q ⊆ P be integral domains and Aut(P ) the group of auto-

morphisms of P . Define Aut(P/Q) := {σ ∈ Aut(P ) : σx = x for all x ∈ Q}.

We say that P/Q is a finite Galois domain extension, if P = Q[a] and

f = irr(a, Quot(Q)) satisfies:

(a) f ∈ Q[X ], so that P ∼= Q[X ]/〈f〉.
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(b) f factors in P [X ] into a product of distinct linear monic polynomials.

We refer to a as a primitive element for the domain extension P/Q and call

Gal(P/Q) = Aut(P/Q) the Galois group of P/Q.

This notion of a Galois domain extension generalizes the notion of a Galois

ring cover [FJ, Definition 6.1.3] — here we do not assume the domains P and

Q to be integrally closed, nor do we assume that the discriminant of a is in Q×.

The following two lemmas follow from Definition 1.2 by basic Galois theory.

Lemma 1.3: If P/Q is a finite Galois domain extension, then Quot(P )/ Quot(Q)

is a finite Galois field extension, Gal(P/Q) ∼= Gal(Quot(P )/ Quot(Q)), the

domain P is a free Q-module of rank |Gal(P/Q)|, and PGal(P/Q) = Q.

Lemma 1.4: Let F/E be a finite Galois extension of fields and let Q ⊆ P be

integral domains such that E ⊆ Q, F ⊆ P , F ∩ Quot(Q) = E in Quot(P ),

and QF = P . Then P/Q is a finite Galois domain extension, and Gal(P/Q) ∼=

Gal(F/E).

We fix a generalized patching data E = (E, Fi, Qi, Ω; Gi, G)i∈I for this section

and extend it by more rings and algebras. For each i ∈ I let Pi = QiFi

be the compositum of Fi and Qi in Ω. By condition (2c) Pi/Qi is a Galois

domain extension, the Galois group of Pi/Qi is isomorphic (via the restriction

of automorphisms) to Gi = Gal(Fi/E), Pi is a free Qi-module of rank |Gi|, and

P
Gal(Pi/Qi)
i = Qi. Identify Gal(Pi/Qi) with Gi via this isomorphism. Consider

the algebra

N = IndG
1 Ω =

{

∑

θ∈G

aθθ : aθ ∈ Ω

}

of dimension |G| over Ω. Addition and multiplication are defined in N compone-

ntwise; thus, 1 =
∑

θ∈G θ, Ω is embedded diagonally in N , and G acts on N

by
(

∑

θ∈G

aθθ
)σ

=
∑

θ∈G

aθσ
−1θ =

∑

θ∈G

aσθθ, σ ∈ G.

The action of G commutes with the addition and the multiplication in N .

For each i ∈ I consider the following Qi-subalgebra of N :

(3)

Ni = IndG
Gi

Pi =

{

∑

θ∈G

aθθ ∈ N : aθ ∈ Pi, aτ
θ = aθτ for all θ ∈ G, τ ∈ Gi

}

.



Vol. 166, 2008 ALGEBRAIC PATCHING OVER COMPLETE DOMAINS 189

If ∆ is a system of representatives of G/Gi, then

(3′)

Ni = IndG
Gi

Pi =

{

∑

θ∈G

aθθ ∈ N : aθ ∈ Pi, aτ
θ = aθτ for all θ ∈ ∆, τ ∈ Gi

}

.

Throughout this paper, whenever we consider a patching data as in (1), we

automatically associate with it the rings N, Ni, i ∈ I, defined as above.

The next lemma gives the basic properties of the algebra Ni.

Lemma 1.5: Let i ∈ I.

(a) Ni is G-invariant.

(b) NG
i = Qi.

(c) Ni is isomorphic over Qi to the direct product of (G : Gi) copies of Pi.

(d) Ni is a free Qi-module of rank |G|(= dimΩ N).

Proof. (a) Let α =
∑

θ∈G aθθ ∈ Ni and σ ∈ G. Then aτ
θ = aθτ for each

τ ∈ Gi, θ ∈ G, so aτ
σθ = aσθτ , so ασ =

∑

θ∈G aσθθ ∈ Ni.

(b) The group G fixes α =
∑

θ∈G aθθ ∈ Ni if and only if aσθ = aθ for all

σ, θ ∈ G, that is, aθ = a1 for all θ ∈ G. Thus

NG
i = {

∑

θ∈G

a θ : a ∈ Pi, aτ = a for all τ ∈ Gi}

= {a ∈ Pi : aτ = a for all τ ∈ Gi} = PGi

i = Qi.

(c) Let ∆ be a system of representatives of G/Gi. It follows from (3′) that
∑

θ∈G aθθ 7→
∑

ω∈∆ aωω is a Qi-isomorphism Ni → P
|∆|
i .

(d) Since [Pi : Qi] = |Gi|, the assertion follows from (c).

It follows from the preceding lemma that F =
⋂

i∈I Ni is an E-algebra which

is G-invariant. We call F the pre-compound of the generalized patching data

E . We note that this was called “co-compound” in [HJ], however the name

“pre-compound” is more appropriate.

Let S = (θ|θ ∈ G) be the standard basis of N over Ω.

Remark 1.6: A basis of Nt over Qt

Let t ∈ I, l = |Gt|. Suppose β is a primitive element for Pt/Qt, and let

∆ = {ω1, . . . , ωm} be a system of representatives of G/Gt. Let τ1, . . . , τl be a
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listing of the elements of Gt. Then the following sequence of |G| elements of Nt

(4) Ct =

( l
∑

i=1

(βj−1)τi(ωkτi)|1 ≤ k ≤ m, 1 ≤ j ≤ l

)

(say, with the lexicographical order) is a basis of N over Ω.

Indeed, let B ∈ Mn(Ω) be the transition matrix from S to Ct, that is, the

matrix defined by Ct = SB. Of course, B depends on the order of the se-

quence S, but only up to the order of its columns, which will not be important

in the sequel. For instance, write S as (1(ωkτi) | 1 ≤ k ≤ m, 1 ≤ i ≤ l),

with the lexicographical order. Then B consists of m identical diagonal blocks

B0 =
(

(βj−1)τi
)

∈ Ml(Ω). These are Vandermonde matrices, hence detB0 =

±
∏

τ,τ ′∈Gt

τ 6=τ ′

[βτ − βτ ′

] 6= 0. Therefore det B 6= 0, so B ∈ GLn(Ω). Consequently,

Ct is a basis of N over Ω.

Now we show that Ct is also a linear basis of Nt over Qt. Indeed,

let
∑

θ∈G aθθ =
∑

1≤k≤m
1≤i≤l

aωkτi
ωkτi be an arbitrary element of Nt. Since

1, β, . . . , βl−1 is a basis for Pt over Qt, there exist elements qk,j ∈ Qt, 1 ≤ k ≤ m,

1 ≤ j ≤ l, such that for each 1 ≤ k ≤ m: aωk
=

∑

1≤j≤l qk,jβ
j−1. Thus

aωkτi
= aτi

ωk
=

∑

1≤j≤l qk,j(β
j−1)τi for each 1 ≤ k ≤ m, 1 ≤ i ≤ l, so

∑

1≤k≤m

1≤i≤l

aωkτi
ωkτi =

∑

1≤k≤m

1≤i≤l

(

∑

1≤j≤l

qk,j(β
j−1)τi

)

ωkτi

=
∑

1≤k≤m

1≤j≤l

qk,j

(

∑

1≤i≤l

(βj−1)τiωkτi

)

.

Corollary 1.7: Let t ∈ I, β a primitive element of Ft/E and R be a subring of

Ω that contains all of the conjugates βτ of β over E and (discrE β)−1. Then

there exists a basis Ct of Nt over Qt that is also a basis for N over Ω, and such

that the transition matrix from S to Ct is in GLn(R).

Proof. Since β is a primitive element for Ft/E, it is also a primitive element for

Pt/Qt. Now, simply note that all of the entries of the matrix B in the preceding

remark lie in R, and detB is a power of ± discrE β, so it belongs to R×. Hence

B ∈ GLn(R).

Proposition 1.8: Assume that:
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(Com) There is a linear basis of N over Ω that is also a basis for Ni over Qi

for each i ∈ I.

Then:

(a) F =
⋂

Ni is a field and F/E is a Galois extension with Galois group G.

(b) There is a linear basis of F over E that is also a basis of Ni over Qi for

each i ∈ I.

Proof. By Lemma 1.5, Ni is an algebra over Qi. We may view Qi as an algebra

over E, and so Ni is an E-algebra. Equation (3) gives an explicit presentation

of F as

(5)

F =

{

∑

θ∈G

aθθ ∈ IndG
1 Ω : aθ ∈

⋂

i∈I

Pi, aθτ = aτ
θ for all θ ∈ G and τ ∈

⋃

i∈I

Gi

}

.

Proof of (b): Let C = (α1, . . . , αn) be the basis mentioned in (COM). Then

C is a basis of F as an algebra over E. Indeed, every b ∈ N can be uniquely

written as b = a1α1 + · · ·+anαn with a1, . . . , an ∈ Ω. Then b ∈ Ni if and only if

a1, . . . , an ∈ Qi. Since
⋂

i∈I Qi = E, we have b ∈ F if and only if a1, . . . , an ∈ E.

Proof of (a): Observe that F is an integral domain. Indeed, suppose
∑

θ∈G aθθ,
∑

θ∈G bθθ ∈ F and
∑

θ∈G aθbθθ = 0. In particular, a1b1 = 0,

so either a1 = 0 or b1 = 0. Without loss of generality, we may assume

that a1 = 0 (and prove that aθ = 0, for all θ ∈ G). Let θ ∈ G. Since

G = 〈Gi|i ∈ I〉, we have θ = τ1τ2 . . . τl, where τ1, . . . , τl ∈
⋃

i∈I Gi. Now

aθ = aτ1τ2...τl
= aτl

τ1···τl−1
= . . . = aτ1···τl

1 = 0τ1···τl = 0, as contended.

Since F is a commutative finitely generated algebra over the field E and has

no zero divisors, F itself is a field. By Lemma 1.5(a), the Ni are G-invariant,

hence so is F . By Lemma 1.5(b), FG =
⋂

i∈I NG
i =

⋂

i∈I Qi = E. By (b),

[F : E] = |G|, hence G acts faithfully on F . By Galois theory F/E is a Galois

extension with group G.

Definition 1.9: Consider the Ω-algebras homomorphism ϕ: N → Ω given by
∑

aθθ 7→ a1. Then ϕ|F is a monomorphism. Since E is invariant under ϕ,

ϕ(F ) is a Galois extension of E with group isomorphic to G. We call ϕ(F ) the

compound of the patching data.
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2. Normed rings and power series

The works [HV, §1] and [HJ, §3] study rings of convergent power series in disks

of radius 1 over complete rank-1 valued fields. In an unpublished manuscript,

Haran follows [FrP] and generalizes these rings by allowing an arbitrary radius.

A common feature of these “analytic” rings is that they are principal ideal

domains. In this section and in the next one, we generalize Haran’s analytic

rings by taking rings of convergent power series with coefficients in a complete

domain D, which need not be a field.

Definition 2.1: Normed ring. Let R be an associative ring with 1. A norm

on R is a function | · |: R → R that satisfies the following conditions for all

a, b ∈ R:

(a) |a| ≥ 0, and |a| = 0 if and only if a = 0; further |1| = | − 1| = 1.

(b) |a + b| ≤ max(|a|, |b|).

(c) |ab| ≤ |a| · |b|.

If there exists a ∈ D with 0 < |a| < 1, we say that | · | is nontrivial.

If in addition to (a) and (b), | · | satisfies also:

(c′) |ab| = |a| · |b|,

we say that | · | is an absolute value on R.

Every real-valued valuation v of R naturally corresponds to an absolute value

given by |x| = (1/2)v(x).

Remark 2.2: Let R be a normed ring and let a, b ∈ R. Then:

(a) | − a| = |a|.

(b) If |a| < |b|, then |a + b| = |b|.

(c) A series
∑∞

n=0 an of elements of R is Cauchy if and only if an → 0.

(d) If R is complete and |a| < 1, then 1−a ∈ R× and its inverse is of the form

1+b with |b| < 1 (so |(1−a)−1| = 1). Indeed, a+a2+· · · converges, say,

to b ∈ R, with |b| = |a| < 1. Since (1−a)(1+a+· · ·+an) = 1−an+1 → 1,

we have (1 − a)(1 + b) = 1. Similarly (1 + b)(1 − a) = 1.

(e) An absolute value |·| on R can be extended to Quot(R) by |a/b| = |a|/|b|.

Now we discuss complete rings that are of significance to this work.

Example 2.3:

(a) The ring Zp of p-adic integers is complete with respect to the p-adic val-

uation (and so also with respect to the corresponding absolute value).
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Its quotient field Qp is also complete with respect to the induced abso-

lute value.

(b) Similarly, if F is a field, then the ring F [[x]] of formal power series over

F , as well as its quotient field F ((x)), are complete with respect to the

x-adic valuation.

(c) The ring Z[[x]] of formal power series over the integers is complete with

respect to the x-adic valuation (and the corresponding absolute value).

However, its quotient field is not complete with respect to the induced

absolute value. To prove this, consider the ring B = { 1
c

∑∞
i=m

bi

ai x
i :

bi ∈ Z, 0 6= a, c ∈ Z, m ∈ Z}. This is a subring of the field Q((x))

and Z[[x]] ⊆ B. Moreover, f−1 ∈ B for every 0 6= f ∈ Z[[x]], hence

Quot(Z[[x]]) ⊆ B. Indeed, let f =
∑∞

n=m anxn ∈ Z[[x]], ai ∈ Z, am 6= 0.

Since x−m ∈ B, we may replace f by x−mf to assume that m = 0. Let

a = a0. Then f = a(1 + a1
x
a + · · · ). The expression in the parentheses

is an invertible element of Z[[x
a ]] ⊆ B, hence f−1 ∈ B. Now, let f =

∑∞
i=0 xi/2i2 ∈ Q[[x]]. Then, the sequence of partial sums of f is a

Cauchy sequence in Quot(Z[[x]]), whose limit f is not in B, and hence

is not in Quot(Z[[x]]). Indeed, let 0 6= a, c ∈ Z, then for a large enough

i ∈ N we have aic 6≡ 0( mod 2i2). Hence, f 6= 1
c

∑∞
i=0

bi

ai x
i for {bi} ⊆ Z,

and so f /∈ B. Thus, Quot(Z[[x]]) is not complete.

(d) The ring D = Z[[x]][x−1]. This subring of Quot(Z[[x]]) is complete with

respect to the x-adic valuation vx. Indeed, let fi be a Cauchy series in

D. We show that there is an integer k such that xkfi ∈ Z[[x]] for i ≥ 0.

Indeed, there exists n ∈ N such that vx(fi−fn) ≥ 0 for all i ≥ n. There

exists k ∈ N such that vx(fi) ≥ −k for all 1 ≤ i ≤ n. For i ≥ n we

have vx(fi) = vx(fi − fn + fn) ≥ min(0,−k) for all i ≥ n. Therefore,

xkfi ∈ Z[[x]] for all i ≥ 0.

Thus, xkfi converges to a limit g ∈ Z[[x]], and fi converges to x−kg ∈ D.

Let R be a complete normed ring and z a free variable over R. Define

(6) R{z} =

{ ∞
∑

n=0

anzn : an ∈ R, lim
n→∞

an = 0

}

.

This set is a ring under addition and multiplication of power series, in which

z is in the center; It contains R.

Extend | · | from R to a function | · |: R{z} → R by |
∑

n anzn| = maxn(|an|).
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Lemma 2.4:

(i) The function | · |: R{z} → R is a norm on R{z} extending the norm

of R.

(ii) The ring R{z} is complete with respect to the norm | · |.

(iii) Let S be a complete normed ring containing R. Each c ∈ S with |c| ≤ 1

that commutes with the elements of R defines an evaluation homo-

morphism R{z} → S given by f =
∑

n anzn 7→ f(c) =
∑

n ancn.

Proof. (i) and (iii) are clear.

(ii) Consider a Cauchy sequence (fn) in R{z}. This yields a Cauchy sequence

in each coefficient, hence (fn) converges coefficientwise to some formal sum

f =
∑

i aiz
i. Moreover, f ∈ R{z} and |f − fn| → 0.

Definition 2.5: For g =
∑∞

n=0 anzn 6= 0 in R{z} define the pseudodegree

of g to be the integer d = max(n: |an| = |g|). Call ad the pseudoleading

coefficient of g. Call g regular, if ad is invertible in R and |cad| = |c| · |ad| for

all c ∈ R.

Definition 2.5 generalizes [HV, Definition 1.4], where | · | is an absolute

value. However, with this modified definition, the Weierstrass Division Theorem

[HV, Theorem 1.6], its corollary, and their proofs go through verbally.

Proposition 2.6 (HV, Theorem 1.6, Corollary 1.7):

(a) Let f ∈ R{z} and let g ∈ R{z} be regular of pseudodegree d. Then

there are unique q ∈ R{z} and r ∈ R[z] such that f = qg+r. Moreover,

|q| · |g| ≤ |f | and |r| ≤ |f |.

(b) Let f ∈ R{z} be regular of pseudodegree d. Then f = qg, where q is

a unit of R{z} and g ∈ R[z] is a monic polynomial of degree d with

|g| = 1.

3. Convergent power series

Let D be a complete domain with respect to a nontrivial norm | · |, and let

K = Quot(D). Let x be a free variable over K. In this section, we study

elements of K((x)) which are separably algebraic over K(x).

Consider the set K[x−1] + xD{x} = {
∑∞

n=m anxn ∈ K((x)) : an ∈ K if

n ≤ 0 and an ∈ D ifn > 0, m ∈ Z, |an|
n→∞
−→ 0} as a D-submodule of K((x)).
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Definition 3.1: An element f(x) ∈ K((x)) is D-convergent if there exists an

element 0 6= β ∈ K such that f(βx) ∈ K[x−1] + xD{x}.

Remark 3.2: Suppose f(x) ∈ K((x)) is D-convergent. Then there exists an

element 0 6= β1 ∈ D, |β1| < 1 such that f(β1x) ∈ K[x−1] + xD{x}.

Indeed, let 0 6= β ∈ K with f(βx) =
∑∞

n=m αnxn ∈ K[x−1] + xD{x} and

|αn|
n→∞
−−−−→ 0. Write β as β1

β2
, with 0 6= β1, β2 ∈ D. By multiplying the

numerator and denominator with a sufficiently small element of D, we may

assume that |β1|, |β2| < 1. Thus, f(β1x) = f(ββ2x) =
∑∞

n=m αnβn
2 xn. For

n ≥ 0 we have |αnβn
2 | ≤ |αn|, so |αnβn

2 |
n→∞
−−−−→ 0. Since αnβn

2 ∈ D for n ≥ 1,

we have f(β1x) ∈ K[x−1] + xD{x}.

Lemma 3.3: An element f(x) =
∑∞

n=m anxn ∈ K((x)) is D-convergent if and

only if there exist 0 6= γ ∈ D and c ∈ R such that:

(i) γnan ∈ D for each n ≥ 1; and

(ii) |an| < cn for each n ≥ 1.

Proof. First, suppose f(x) =
∑∞

n=m anxn ∈ K((x)) is D-convergent. Then

there is an element 0 6= γ ∈ D such that f(γx) =
∑∞

n=m αnxn, where αn ∈ D

for each n ≥ 1, |αn|
n→∞
−−−−→ 0. Thus γnan = αn ∈ D for each n ≥ 1, and there

exists 1 < s ∈ R such that for each n ≥ 1, |αn| < s. Hence for each n ≥ 1,

|an| ≤ s · |1/γn| < cn, if c is sufficiently large.

Conversely, suppose that conditions (i), (ii) hold, for 0 6= γ ∈ D and c ∈ R.

For each n ≥ 1, |anγn| < |γ|ncn < tn for some 1 < t ∈ R. Now consider an

element 0 6= β ∈ D such that |β| < t−2 (there must be such an element, since the

norm of D is nontrivial). Then for all n ≥ 1, we have |anγnβn| < t−n n→∞
−−−−→ 0

and anγnβn ∈ D for each n ≥ 1. Thus f(βγx) ∈ K[x−1] + xD{x}, and so f(x)

is D-convergent.

Lemma 3.4: Let f(x) ∈ K((x)), and let β ∈ K×. Then f(x) is D-convergent

if and only if f(βx) is D-convergent.

Proof. First, suppose f(x) is D-convergent. Then there exists 0 6= γ ∈ D such

that f(γx) =
∑∞

n=m αnxn, where m ∈ Z, αn ∈ D for each n ≥ 1, |αn|
n→∞
−−−−→ 0.

Since f(γx) = f( γ
β ·βx), f(βx) is also D-convergent. For the converse, suppose

f(βx) is D-convergent. Then f(x) = f(β−1βx) is D-convergent.

Denote the set of all D-convergent elements of K((x)) by K((x))D.
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Lemma 3.5: Suppose f1, . . . , fk ∈ K((x))D, k ≥ 1. Then there exists β ∈ D,

0 < |β| < 1 such that f1(βx), . . . , fk(βx) ∈ K[x−1] + xD{x}.

Proof. By Remark 3.2 there exist 0 6= β1, . . . , βk ∈ D, |β1|, . . . , |βk| < 1 such

that for each 1 ≤ i ≤ k, f(βix) ∈ K[x−1] + xD{x}. Take β =
∏k

i=1 βi 6= 0. For

1 ≤ i ≤ k we get f(βx) ∈ K[x−1] + xD{x}, because f(βx) = f(β/βi · βix) and

|β/βi| = |
∏

j 6=i βj | ≤ 1.

Proposition 3.6: K((x))D is a field containing K(x).

Proof. By the preceding lemma, K((x))D is closed under addition. Let

f1(x), f2(x) ∈ K((x))D . We prove that f1(x)f2(x) ∈ K((x))D . Let f2(x) =
∑∞

n=m anxn. By Lemma 3.3, there are 0 6= γ ∈ D, c ∈ R such that anγn ∈

D, |an| < cn for n ≥ 1.

First consider the case where f1(x) = x−1. Then

f1(x)f2(x) =

∞
∑

n=m−1

an+1x
n.

Let δ = γ2 ∈ D. Then δnan+1 = γn−1(γn+1an+1) ∈ D and |an+1| < cn+1 <

(c + 1)n+1 ≤ ((c + 1)2)n for each n ≥ 1. Hence f1(x)f2(x) ∈ K((x))D.

Similarly, if f1(x) = x, then f1(x)f2(x) ∈ K((x))D.

Next, suppose that f1(x) = α ∈ K, say α = a/b with a, b ∈ D and 0 6= b.

Then f1(x)f2(x) =
∑∞

n=m
aan

b xn and aan

b (bγ)n = abn−1(γnan) ∈ D, |aan

b | <
(∣

∣

a
b

∣

∣c
)n

for each n ≥ 1. Hence f1(x)f2(x) ∈ K((x))D .

Now let f1(x) be arbitrary. By the preceding cases K((x))D is closed un-

der multiplication by an element of K[x, x−1]. Hence we may assume that

f1(x), f2(x) ∈ xK[[x]]. By Lemma 3.5, there exists δ ∈ K× such that

f1(δx), f2(δx) ∈ K[x−1] + xD{x}, hence f1(δx), f2(δx) ∈ xD{x}. But then

f1(δx)f2(δx) ∈ xD{x}, so f1(x)f2(x) ∈ K((x))D.

It remains to prove that each nonzero element of K((x))D is invertible. It

suffices to show that 1/Σ∞
i=maix

i ∈ K((x))D, where ai = αi/γi for αi, γ ∈ D

and |ai| ≤ ci for some c > 1 and for all i ≥ 1. We have K[x, x−1] ⊆ K((x))D,

so by multiplying with a power of x and an element of K, we may assume that

m = 0 and a0 = 1. We construct elements β0, β1, . . . ∈ D such that a0β0 = 1,

and

(7)
∑

i+j=k

αiβj = 0 and |βk/γk| ≤ ck
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for each k ≥ 1 (and then
∑ βn

γn xn is the required inverse element). Indeed, take

β0 = 1, β1 = −α1. Then (7) holds for k = 1. Suppose, by induction, that we

have constructed elements β0, β1, . . . , βn such that (7) holds for each 1 ≤ k ≤ n.

Now, take βn+1 = −
∑

i+j=n+1

j≤n

αiβj . Then
∑

i+j=n+1 αiβj = 0, βn+1 ∈ D, and

|βn+1

γn+1 | = |
∑

i+j=n+1

j≤n

αi

γi

βj

γj | ≤ max i+j=n+1

j≤n

cicj = cn+1.

Consequently K((x))D is a field that contains K[x, x−1], hence also

K(x).

A simple case distinction verifies the next lemma.

Lemma 3.7: Let v1, . . . , vd be a sequence in R ∪ {∞}, such that v1 > 0,

v2, . . . , vd < 0. Let vσ(1), . . . , vσ(k) be a subsequence of v1, . . . , vd. Then

vσ(1) + · · · + vσ(k) ≥ v2 + · · · + vd, and equality holds if and only if k =

d − 1, {σ(1), . . . , σ(k)} = {2, 3, . . . , d}.

Lemma 3.8: Let (F, v) be a valued field and h(Y ) = pdY
d + · · · + p1Y + p0 ∈

F [Y ] a polynomial of degree d with d distinct roots y1, . . . , yd in F . Suppose

v(y1) > 0, and v(y2), . . . , v(yd) < 0. Then v(pk) > v(p1) for each k 6= 1.

Proof. Observe that h(Y )/pd =
∏d

j=1(Y − yj). For 1 ≤ k ≤ d − 1 we have:

pd−k/pd = (−1)k
∑

σ

k
∏

i=1

yσ(i),

where σ ranges over all injective maps {1, . . . , k} → {1, . . . , d}. Suppose σ is

such a map. Then, by Lemma 3.7, we have v(
∏k

i=1 yσ(i)) ≥ v(y2 · · · yd), and

equality holds if and only if k = d − 1, and {σ(1), . . . , σ(k)} = {2, 3, . . . , d}.

Therefore, v(pd−k

pd
) ≥ v(y2 · · · yd) and equality holds if and only if k = d − 1.

Thus, for each k 6= 1, v(pk) − v(pd) > v(y2 · · · yd) = v(p1) − v(pd), hence

v(pk) > v(p1).

Lemma 3.9: Let F be a field, and let h(Y ) = pdY
d + · · ·+ p1Y + p0 ∈ F [x][Y ]

be a polynomial over F [x]. Suppose that for each 0 ≤ k ≤ d we have pk =
∑∞

n=0 bk,nxn, where bk,n ∈ F are almost all zero, and b0,0 = 0, b1,0 = 1, b2,0 =

· · · = bd,0 = 0. Let y =
∑∞

n=0 anxn ∈ F [[x]] be a root of h. Then for each

n ≥ 1, an is a sum of products of the form ±bk,j0aj1aj2 · · · ajk
, with 0 ≤ k ≤

d, 0 ≤ j0 ≤ n, 0 < j1, . . . , jk < n such that j0 + j1 + · · · + jk = n.
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Proof. We get pkyk = (
∑

n bk,nxn)(
∑

n anxn)k =
∑

n ck,nxn, for 0 ≤ k ≤ d,

where

ck,n =
∑

σ∈Sk,n

bk,σ(0)

k
∏

j=1

aσ(j)

and

Sk,n = {σ: {0, . . . , k} → {0, . . . , n} :
k

∑

j=0

σ(j) = n}.

By considering the equality pdy
d + · · · + p1y + p0 = 0 modulo (x), we get

0 = bd,0a
d
0 + · · · + b1,0a0 + b0,0 = a0, and comparing coefficients at xn we get:

(8) c0,n = b0,n and c1,n = b1,0an + · · · + b1,n−1a1

Let k ≥ 2. Since bk,0 = 0, all terms in ck,n that contain an vanish, and

therefore:

(9)

ck,n =

[

sum of products of the form bk,σ(0)

k
∏

j=1

aσ(j) with σ(j) < n, 1 ≤ j ≤ k,

k
∑

j=0

σ(j) = n

]

.

From the relation
∑d

k=0 pkyk = h(y) = 0 we conclude that
∑d

k=0 ck,n = 0,

for each n ≥ 0. Hence, by (8) and (9),

an =b1,0an

=

[

sum of products of the form ± bk,σ(0)

k
∏

j=1

aσ(j), with 0 < σ(j) <

n, 1 ≤ j ≤ k,
k

∑

j=0

σ(j) = n

]

.

Proposition 3.10: Let y ∈ K((x)) be separably algebraic over E = K(x).

Then y is D-convergent.

Proof. By Proposition 3.6, E ⊆ K((x))D. Thus we may assume that y /∈ E.

Let y =
∑∞

n=l anxn.
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Part A: A shift of y.

Let y1, y2, . . . , yd (d ≥ 2) with y1 = y be the distinct conjugates of y over

E. Let v be the natural valuation of K((x)) defined by v(
∑∞

n=k bnxn) =

min{i : bi 6= 0}, v(0) = ∞. Extend v to the algebraic closure of K((x)) and

let r = max{v(y − yi) : i = 2, . . . , d} (6= ∞), s = r + 1. Define: y′
i :=

x−s(yi −
∑s

n=l anxn), for each 1 ≤ i ≤ d. Then y′
1, . . . , y

′
d are the distinct

conjugates of y′
1 over E. Moreover, v(y′

1) ≥ 1, hence for 2 ≤ i ≤ d: v(y′
1 − y′

i) =

v(y1 − yi) − s ≤ r − s = −1, so v(y′
i) ≤ −1.

In view of Proposition 3.6, y′
1 is D-convergent if and only if y1 is D-convergent.

So, replace yi with y′
i to assume that: v(y) ≥ 1 and v(yi) ≤ −1 for each

2 ≤ i ≤ d. In particular, y =
∑∞

i=0 anxn with a0 = 0 and y1, . . . , yd are the

roots of an irreducible separable polynomial h(Y ) = pdY
d+· · ·+p1Y +p0 ∈ E[Y ]

with d ≥ 2.

Part B: The value of the coefficients pk.

Multiplying by an element of D[x], we may assume pi ∈ D[x]. By Lemma

3.8 we have e = v(p1) < v(pi) for each i 6= 1. Divide the pi by xe to assume

that v(p1) = 0 < v(pi) for each i 6= 1. Therefore, for each k = 0, . . . , d:

pk =
∑t

n=0 bk,nxn, where bk,n ∈ D, t ∈ N, b1,0 6= 0, and for each k 6= 1 : bk,0 = 0.

For all 0 ≤ k ≤ d and n > t let bk,n = 0 and denote β = b1,0.

By Lemma 3.4 it suffices to prove that ỹ =
∑∞

i=0 ai(βx)i is D-convergent. The

substitution x 7→ βx defines an automorphism of K((x)), hence the following

equality follows from h(y) = 0:

pd(βx)

β
ỹd + · · · +

p1(βx)

β
ỹ +

p0(βx)

β
= 0.

The coefficients in this equality are all in D[x], in particular p1(βx)
β =

β+b1,1βx+...
β = 1 + b1,1x + · · · . Thus, without loss of generality, we may as-

sume β = 1.

Part C: The coefficients an.

By Lemma 3.9, an is a sum of products of the form

(10) ±bk,j0aj1aj2 · · · ajk
,

with 0 ≤ k ≤ d, 0 ≤ j0 ≤ n, 0 < j1, . . . , jk < n such that j0 + j1 + · · ·+ jk = n.

Claim I: {an}∞n=0 ⊆ D.

Indeed, a0 = 0 ∈ D. Assume that am ∈ D for each 0 ≤ m ≤ n − 1. Then,

each summand in (10) belongs to D, hence an ∈ D.
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Claim II: There exists 1 < c ∈ R such that |an| ≤ cn, for all n ≥ 0.

Take an element 1 < c ∈ R such that |bk,n| ≤ cn for each 0 ≤ k ≤ d and

n ≥ 1. We prove, by induction, that |an| ≤ cn for each n ≥ 0. For n = 0

this holds trivially. Suppose the claim holds for each 0 ≤ m ≤ n − 1. For each

summand in (10) we have |bk,j0

∏k
l=1 ajl

| ≤ c
∑ k

l=0
jl = cn, thus |an| ≤ cn, as

contended.

We conclude that y is D-convergent.

Corollary 3.11: Let f1(x), . . . , fk(x) ∈ K[[x]] be separably algebraic over

K(x). Then there exist c ∈ K× such that f1(cx), . . . , fk(cx) ∈ K + xD{x}.

Proof. By Proposition 3.10, f1(x), . . . , fk(x) ∈ K((x))D . By Lemma 3.5, there

exists c ∈ K× such that f1(cx), . . . , fk(cx) ∈ (K[x−1] + xD{x}) ∩ K[[x]] =

K + xD{x}.

4. Rings of convergent power series in several dependent variables

Let D be an integral domain, complete with respect to a norm | · |, and let I

be a finite set. For each i ∈ I let r, ci ∈ D such that r, ci − cj ∈ D× if i 6= j.

Assume that:

(11)
∣

∣

∣

r

ci − cj

∣

∣

∣
≤ 1 for all i 6= j.

Let K = Quot(D), and let E = K(x) be the field of rational functions over

K in the free variable x. For each i ∈ I let wi = r/(x − ci) ∈ K(x).

Lemma 4.1: (a) For all i 6= j in I and for each nonnegative integer m

(12) wiw
m
j =

rm

(ci − cj)m
wi −

m
∑

k=1

rm+1−k

(ci − cj)m+1−k
wk

j .

(b) Let D0 be Z if char(K) = 0 and Fp if char(K) = p. Set D′
0 =

D0[
r

ci−cj
| i 6= j ∈ I]. Given nonnegative integers mi, i ∈ I, not all

zero, there exist aik ∈ D′
0 such that

∏

i∈I

wmi

i =
∑

i∈I

mi
∑

k=1

aikwk
i .
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(c) Every f ∈ D[wi : i ∈ I] can be uniquely written as

(13) f = a0 +
∑

i∈I

∞
∑

n=1

ainwn
i

where a0, ain ∈ D and almost all of them are zero.

(d) Let i 6= j ∈ I. Then wi/wj = 1 + (ci − cj)/rwi ∈ D[wi] is invertible in

D[wi, wj ].

Proof.

Proof of (a) and (b): Starting with the identity

wiwj =
r

ci − cj
wi +

r

cj − ci
wj

one proves (12) by induction on m. Induction on |I| and maxi∈I mi gives (b).

Proof of (c): The existence of the presentation (13) follows from (b). Note

that D′
0 ⊆ D because ci − cj ∈ D×. To prove the uniqueness we assume that

f = 0 in (13) but ajk 6= 0 for some j ∈ I and k ∈ N. Then,
∑∞

n=1 ajnwn
j =

−a0 −
∑

i6=j

∑∞
n=1 ainwn

i . The left hand side has a pole at cj while the right

hand side has not. This is a contradiction.

Proof of (d): Multiply r/wj − r/wi = ci − cj by wi/r to get that

wi

wj
= 1 +

ci − cj

r
wi

is in D[wi]. Similarly, wj/wi ∈ D[wj ]. Hence wi/wj is invertible in

D[wi, wj ].

Consider the subset R0 =
∑

i∈I D[wi] of the field E = K(x). It follows from

Lemma 4.1 that R0 is the subring D[wi|i ∈ I] of E. Define a real valued function

‖ · ‖ on R0 using the unique presentation (13)
∥

∥

∥

∥

a0 +
∑

i∈I

∑

n≥1

ainwn
i

∥

∥

∥

∥

= max
i,n

{|a0|, |ain|}.

It follows by Lemma 4.1(a) that ‖ · ‖ is a norm on R0, in the sense of Def-

inition 2.1. Indeed, the only nontrivial condition is ‖fg‖ ≤ ‖f‖ · ‖g‖ for

f, g ∈ R0. Let f = a0 +
∑

i∈I

∑

m≥1 aimwm
i , g = b0 +

∑

i∈I

∑

k≥1 bikwk
i .

Denote fg = c0 +
∑

i∈I

∑

n≥1 cinwn
i . By Lemma 4.1, each of the coefficients

c0, cin is a sum of elements of the form α·aim ·bjk, α ∈ D0[
r

ci−cj
], where D0 is the
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prime ring of D. By (11), |α| ≤ 1. Thus |α ·aim · bjk| ≤ 1 · |aim||bjk| ≤ ‖f‖ · ‖g‖,

hence ‖fg‖ ≤ ‖f‖ · ‖g‖.

Let R = D{wi : i ∈ I} be the completion of R0 = D[wi | i ∈ I] with respect

to ‖ · ‖, and extend ‖ · ‖ to R.

Lemma 4.2: Each element f of R has a unique presentation as a multiple power

series:

(14) f = a0 +
∑

i∈I

∞
∑

n=1

ainwn
i ,

where a0, ain ∈ D, and |ain| → 0 as n → ∞. Moreover,

‖f‖ = max
i,n

{|a0|, |ain|}.

Proof. The completion R is the ring of Cauchy sequences of elements of R0

modulo the sequences converging to 0. Each f as in (14) represents the Cauchy

sequence {fd}d≥1 of its partial sums fd = a0 +
∑

i∈I

∑d
n=1 ainwn

i ∈ R0, and as

such represents an element of the completion R. Since ‖fd‖ = maxi,n{|a0|, |ain|}

for each sufficiently large d, we have ‖f‖ = maxi,n{|a0|, |ain|}. Thus, if f = 0,

then a0 = 0 and ain = 0 for all i and n. Consequently, the presentation (14) is

unique.

Now we prove the existence of the presentation (14) for each element of R.

If gk = ak,0 +
∑

i∈I

∑∞
n=1 ak,inwn

i , k = 1, 2, 3, . . ., is a Cauchy sequence in R0,

then each of the sequences {ak,0 : k = 1, 2, 3, . . .} and {ak,in : k = 1, 2, 3, . . .} is

Cauchy. Since D is complete, ak,0 → a0 and ak,in → ain for some a0, ain ∈ D.

Fix i ∈ I and let ε > 0 be a real number. There is an m such that for all k ≥ m

and all n we have |ak,in −am,in| ≤ ‖gk − gm‖ ≤ ε. If n is sufficiently large, then

am,in = 0, and hence |ak,in| ≤ ε. Therefore |ain| ≤ ε. It follows that |ain| → 0.

Define f by equation (14). Then f ∈ R and gk → f in R.

When I = ∅, then R = R0 = D.

We call the partial sum
∑∞

n=1 ainwn
i in (14) the i-component of f .

For each J ⊆ I we denote the completion RJ of D[wj | j∈J ] by D{wj : j∈J}.

By Lemma 4.2, RJ is contained in RI .

Remark 4.3: (a) Let i ∈ I. Then D{wi} = {
∑∞

n=0 anwn
i : an → 0} is a subring

of R, the completion of D[wi] with respect to the norm. Consider the ring D{z}

of converging power series over D. By Lemma 2.4(iii), there is a homomorphism

D{z} → D{wi} given by
∑∞

n=0 anzn 7→
∑∞

n=0 anwn
i . By Lemma 4.2, this is
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a norm preserving isomorphism of normed rings. It extends to the natural

isomorphism K((z)) → K((wi)).

(b) Let c ∈ D such that c − ci ∈ D× and
∣

∣

∣

r
c−ci

∣

∣

∣
≤ 1 for each i ∈ I. Define

an evaluation homomorphism ϕ: R0 → D by wi 7→ r/(c − ci), i ∈ I. Then

|ϕ(f)| ≤ |f | for each f ∈ R0. Hence, if fn is a null series in R0, then ϕ(fn)

is a null series in D. Therefore, ϕ extends to a continuous homomorphism

ϕ: R → D.

(c) Suppose J, J ′ are subsets of I. Then by the unique presentation (14), we

have RJ ∩ RJ′ = RJ∩J′ .

Lemma 4.4 (Degree shifting): Let f ∈ R be given by (14). Fix distinct i, j ∈ I.

Let
∑∞

n=1 a′
inwn

i be the i-component of
wj

wi
f ∈ R. Then

(15)

a′
in = −

∞
∑

ν=n+1

aiνrν−n

(cj − ci)ν−n

=
−r

cj − ci

∞
∑

ν=n+1

aiν

( r

cj − ci

)ν−(n+1)
n = 1, 2, 3, . . .

Furthermore, let m be a positive integer and let
∑∞

n=1 binwn
i be the i-com-

ponent of (wj/wi)
mf . Let ε ≥ 0 be a real number and let d be a positive

integer.

(a) If |ain| ≤ ε for each n ≥ d + 1, then |bin| ≤ | r
cj−ci

|mε for each n ≥

d + 1 − m.

(b) Let d > m. If |ain| < ε for each n ≥ d + 1 and |aid| = ε, then

|bin| < | r
cj−ci

|mε for each n ≥ d + 1 − m and |bi,d−m| = | r
cj−ci

|mε.

(c)
∑∞

n=1 ainwn
i is a polynomial in wi if and only if

∑∞
n=1 binwn

i is.

(d) If the i-component of f is zero, then so is the i-component of
(wj

wi

)m
f .

Proof. Since r ∈ D×, it follows by the equality
wj

wi
= 1+

cj−ci

r wi that
wj

wi
f ∈ R.

So, the above statements make sense.

Proof of (15): We may assume that a0 = ai1 = 0 and akν = 0 for each

k 6= i and each ν. Indeed,
wj

wi
= 1 + (cj − ci)

wj

r ∈ D{wj}. Hence, by (12),
wj

wi
· wν

k ∈ D{wl : l 6= i}. Furthermore,
wj

wi
· wi = wj ∈ D{wl : l 6= i}. Hence a0,

ai1, and the akν do not contribute to the i-component of
wj

wi
f .
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Thus, f =
∑∞

ν=2 aiνwν
i . Hence, by (12),

wj

wi
f =

∞
∑

ν=2

aiνwjw
ν−1
i =

∞
∑

ν=2

aiν

[ rν−1

(cj − ci)ν−1
wj −

ν−1
∑

n=1

rν−n

(cj − ci)ν−n
wn

i

]

=

∞
∑

ν=2

aiνrν−1

(cj − ci)ν−1
wj −

∞
∑

n=1

∞
∑

ν=n+1

aiνrν−n

(cj − ci)ν−n
wn

i ,

from which (15) follows.

Proof of (a) and (b): By induction on m it suffices to assume that m = 1. In

this case we have to prove: (a) If |ain| ≤ ε for each n ≥ d+1, then |a′
in| ≤ | r

cj−ci
|ε

for each n ≥ d. (b) assuming d ≥ 2, if |ain| < ε for each n ≥ d+1 and |aid| = ε,

then |a′
in| < | r

cj−ci
|ε for each n ≥ d and |a′

i,d−1| = | r
cj−ci

|ε. By (11), | r
ci−cj

| ≤ 1.

Hence, (a) follows from (15) with n = d, d + 1, d + 2, . . . and (b) follows from

(15) with n = d − 1, d, d + 1, . . . .

Proof of (c): Again, it suffices to prove that
∑∞

n=1 ainwn
i is a polynomial if

and only if
∑∞

n=1 a′
inwn

i is a polynomial.

If
∑∞

n=1 ainwn
i is a polynomial, then aiν = 0 for all large ν. It follows

from (15) that a′
in = 0 for all sufficiently large n. Therefore,

∑∞
n=1 a′

inwn
i is a

polynomial.

If
∑∞

n=1 ainwn
i is not a polynomial, then for each d0 there exists d > d0

such that aid 6= 0. Increasing d, if necessary, we may assume that |ain| < |aid|

for each n ≥ d + 1. By (b), a′
i,d−1 6= 0. Consequently,

∑∞
n=1 a′

inwn
i is not a

polynomial.

The next three claims prove that if D is a field and the norm | · | is an absolute

value, then R is a principal ideal domain. The proof is due to Dan Haran. The

case where K is algebraically closed appears in [FrP, Theorem 2.2.9].

Lemma 4.5: Suppose D = K and | · | is an absolute value. Let 0 6= f ∈ R.

Then either f ∈ R× or there is an i ∈ I such that f = pu with p ∈ K[wi] and

u ∈ R×.

Proof. If I = ∅, then f ∈ K× = R×. Suppose |I| ≥ 1 and continue by induction

on I.

Write f in the form (14). There is a coefficient with absolute value ‖f‖. Thus

we are either in Case I or Case II below:
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Case I: |a0| = ‖f‖ > |ain| for all i and n Multiply f by a−1
0 to assume that

a0 = 1. Hence ‖1 − f‖ < 1. By Remark 2.2(d), f ∈ R×, and we are done.

Case II: There exist i and d ≥ 1 such that |aid| = ‖f‖ Increase d, if necessary,

to assume that |ain| < |aid| = ‖f‖ for all n > d.

Let A = K{wk : k 6= i}. This is a complete subring of R. Introduce a new

variable z, and consider the ring A{z} of convergent power series in z over A

(Lemma 2.4). Since aid ∈ K× ⊆ A×, the element

f̂ =

(

a0 +
∑

k 6=i

∞
∑

n=1

aknwn
k

)

+

∞
∑

n=1

ainzn

of A{z} is regular of pseudodegree d (Definition 2.5). By Proposition 2.6(b) we

have f̂ = p̂û, where û is a unit of A{z} and p̂ is a monic polynomial of degree

d in A[z].

By definition, ‖wi‖ = 1. By Lemma 2.4(iii) the evaluation homomorphism

θ: A{z} → R defined by
∑

cnzn 7→
∑

cnwn
i , with cn ∈ A, maps f̂ onto f , û

onto a unit of R, and p̂ onto a polynomial p of degree d in A[wi]. Replace f by

p to assume that f ∈ A[wi] is a polynomial of degree d in wi, that is, ain = 0

for all n > d.

If I = {i}, then A[wi] = K[wi], and so we are done. If |I| ≥ 2, choose j ∈ I,

j 6= i. By Lemma 4.1(d), wj/wi = 1 + (cj − ci)/rwj is invertible in R0, hence

in R. As wj/wi ∈ A, we have
wj

wi
(
∑

k 6=i

∑∞
n=1 aknwn

k ) ∈ A. On the other hand,

wj

wi

d
∑

n=1

ainwn
i =

d
∑

n=1

ainwn−1
i wj

is a polynomial in A[wi] of degree ≤ d − 1, by (12). Therefore, multiplying f

by a suitable power of wj/wi, we may assume that f ∈ A. Now we apply the

induction hypothesis to conclude the proof.

Lemma 4.6: Suppose D = K and | · | is an absolute value. Let j ∈ I. Then

each 0 6= f ∈ R can be written as f = pu with p ∈ K[wj] monic, ‖p‖ = 1, and

u ∈ R×.

Proof. By the preceding lemma we may assume that f ∈ K[wi], where i 6= j,

say, f =
∑d

n=0 anwn
i , with ad 6= 0. By Lemma 4.1(d), wi/wj is invertible in
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R0, hence in R. Multiply f by (wj/wi)
d to get

(wj

wi

)d

f =

d
∑

n=0

an

(wj

wi

)d−n

wn
j =

d
∑

n=0

an

(

1 +
cj − ci

r
wj

)d−n

wn
j ∈ K[wj ].

By Remark 4.3(a) K{wj} ∼= K{z}, so the claim follows by Propo-

sition 2.6(b).

Proposition 4.7: Suppose D = K and | · | is an absolute value. Then the

ring R = K{wi : i ∈ I} is a principal ideal domain, hence an integrally closed

domain. Moreover, for each i ∈ I, every ideal a of R is generated by an element

p ∈ K[wi] such that a ∩ K[wi] = pK[wi].

Proof. Let f1, f2 ∈ R r{0} such that f1f2 = 0. Choose i ∈ I. By the preceding

lemma, f1 = p1u1 and f2 = p2u2 with p1, p2 ∈ K[wi] and u1, u2 ∈ R×. Then

p1p2 = f1f2(u1u2)
−1 = 0, hence either p1 = 0 or p2 = 0. We conclude that

either f1 = 0 or f2 = 0, a contradiction. Therefore, R is an integral domain.

By the preceding lemma, each ideal a of R is generated by the ideal a∩K[wi]

of K[wi]. Since K[wi] is a principal ideal domain, a∩K[wi] = pK[wi] for some

p ∈ K[wi]. Consequently, a = pR is a principal ideal.

The domain D need not be a field, nor need the norm | · | on D be an absolute

value. If D is not a field, then R need not be a principal domain (as is the case

in [HJ]). Indeed, suppose there exists c ∈ D with c−ci ∈ D×,
∣

∣

∣

r
c−ci

∣

∣

∣
≤ 1 for each

i ∈ I. Choose a nonzero prime ideal p of D. Let ϕ: R → D be the evaluation

homomorphism wi 7→ r
c−ci

, i ∈ I (Remark 4.3). Then Ker(ϕ) ⊂ ϕ−1(p) are

nonzero prime ideals of R. Thus, dim(R) ≥ 2, so R is not a principal ideal

domain. However, we gain information on R by embedding it into a suitable

principal ideal domain.

For the rest of this section assume that the norm | · | on D is an absolute

value. We note that for our needs in this work, we could have assumed this to

be the case all along. However, all the properties we have proven so far do not

rely on this assumption, and we have chosen to present them in full generality

– they will be useful in future work.

Extend the absolute value to the quotient field K. Let K̂ be the completion

of K with respect to | · |. We consider the ring K̂{wi : i ∈ I} and its subrings

K̂{wi : i ∈ J}, J ⊆ I. Then for each J ⊆ I, the ring RJ is contained in

K̂{wi : i ∈ J}.
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By Proposition 4.7, K̂{wi : i ∈ I} is an integral domain, hence so is its

subring R = D{wi : i ∈ I}. Denote the quotient ring of R by Ω. For each

J ⊆ I consider the rings OJ = D[wi | i ∈ J ] and QJ = (OJ r{0})−1RJ =
{

f/a : f ∈ RJ , a ∈ OJ r{0}
}

. Recall that E = K(x).

Lemma 4.8: Let J be a nonempty subset of I. Then:

(a) E = Quot(OJ ).

(b) The ring QJ is the compositum of E and RJ in Ω.

(c) If j ∈ J then QJ = (O{j} r {0})−1RJ .

Proof.

Proof of (a): We have

Quot(OJ ) = Quot(D[wj | j ∈ J ]) = Quot(D[w−1
j | j ∈ J ])

= Quot(D[x − cj : j ∈ J ]) = Quot(D[x]) = E.

Proof of (b): Since E, RJ ⊆ QJ we have ERJ ⊆ QJ . Let f/p ∈ QJ , f ∈ RJ ,

0 6= p ∈ OJ . Then 1/p ∈ Quot(OJ ) = E, hence f/p = 1
p · f ∈ ERJ .

Proof of (c): Since E = Quot(D[wj ]), it follows that ERJ = Quot(D[wj ])RJ ,

hence QJ = ERJ = (D[wj ] r{0})−1RJ .

For each J ⊆ I, we denote the integral closure of QJ inside its quotient field

by C(QJ). View C(QJ ) as a subring of Ω.

Now we present the main result of this section.

Proposition 4.9: Let J, J ′ be nonempty subsets of I.

(a) If J ∩ J ′ 6= ∅, then QJ ∩ QJ′ = QJ∩J′ .

(b) If J ∩ J ′ = ∅, then QJ ∩ C(QJ′) = E.

Proof.

Proof of (a): By definition, QJ∩J′ ⊆ QJ ∩ QJ′ . Conversely, let 0 6= y ∈

QJ ∩ QJ′ . Fix j ∈ J ∩ J ′. By Lemma 4.8(c), y = g1/q1 with g1 ∈ RJ , 0 6= q1 ∈

O{j} and y = g2/q2 with g2 ∈ RJ′ , 0 6= q2 ∈ O{j}. This yields q2g1 = q1g2 ∈

RJ ∩ RJ′ = RJ∩J′ (by Remark 4.3(c)), hence y = g1q2

q1q2
∈ QJ∩J′ .

Proof of (b): We have E ⊆ ERJ ∩ ERJ′ = QJ ∩ QJ′ ⊆ QJ ∩ C(QJ′).
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Conversely, let 0 6= y ∈ QJ ∩ C(QJ′). Fix j ∈ J and j′ ∈ J ′. By Lemma

4.8(c), y = g1/q1 with 0 6= q1 ∈ O{j} and g1 ∈ D{wi : i ∈ J}. By Propo-

sition 4.7, K̂{wi : i ∈ J ′} is integrally closed, hence so is the localization

(O{j′} r{0})−1K̂{wi : i ∈ J ′}. Since OJ′ = (O{j′} r{0})−1RJ′ and RJ′ ⊆

K̂{wi :∈ J ′}, we have y = g2/q2 with 0 6= q2 ∈ O{j′}, g2 ∈ K̂{wi : i ∈ J ′}.

Write q1 as
∑d1

n=0 bnwn
j , with bn ∈ D. Put h1 = (

wj′

wj
)d1q1. We have

wj′

wj
∈ D[wj′ ] and thus h1 =

∑d1

n=0 bn(
wj′

wj
)d1−nwn

j′ ∈ D[wj′ ] (by Lemma 4.1(d)).

Similarly there exists d2 ≥ 0 such that h2 = (
wj

wj′
)d2q2 ∈ D[wj ]. Let d = d1 +d2.

Then, for each k ∈ J

(16) g1h2 ·

(

wj′

wk

)d

= g2h1 ·

(

wj

wk

)d

.

Note that g1h2 ∈ D{wi : i ∈ J} while g2h1 ∈ K̂{wi : i ∈ J ′}. In partic-

ular, the k-th component of g2h1 is zero. By Lemma 4.4(d), the k-th com-

ponent of g2h1 ·
(wj

wk

)d
is zero. By (16), the k-th component of g1h2 ·

(wj′

wk

)d

is also zero. Hence, by Lemma 4.4(c), the k-th component of g1h2 is a

polynomial in K̂[wk]. Since the coefficients of g1h2 belong to D (and the

presentation as a sum of components is unique), we conclude that the k-th

component of g1h2 belongs to D[wk]. Thus g1h2 ∈ D[wk | k ∈ J ], so y = g1h2

q1h2
∈

Quot(D[wk | k ∈ I]) = E.

For each i ∈ I, let Qi = QIr{i}, Q
′
i = Q{i}. Note that by this notation

Qi 6= Q{i}.

Corollary 4.10:
⋂

i∈I Qi = E.

Proof. Let j ∈ I. By Proposition 4.9(a),
⋂

i∈I Qi = Qj∩Q′
j , and by Proposition

4.9(b), Qj ∩ Q′
j ⊆ Qj ∩ C(Q′

j) = E. It follows that
⋂

i∈I Qi = E.

5. Factorization of matrices over complete rings

In this section we show how to decompose a matrix over a complete ring into a

product of matrices over certain subrings. We recall the corresponding notion

from [HJ, §4] and prove a somewhat different factorization result than that of

[HJ].
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Lemma 5.1: Cartan’s Lemma, [FrP, Lemma 4.5.3], [Vo, Lemma 11.14] Let

M be a complete normed ring (Definition 1.1). Let M1 and M2 be complete

subrings of M . Suppose that

(d) for each a ∈ M there are a+ ∈ M1 and a− ∈ M2 with ‖a+‖, ‖a−‖ ≤ ‖a‖

such that a = a+ + a−.

Then for each b ∈ M with ‖b − 1‖ < 1 there are b1 ∈ M×
1 , b2 ∈ M×

2 such that

b = b1b2.

The reader looking for a proof of the preceding lemma may find it more

convenient to look at the proof of [HV, Lemma 2.2].

For the rest of this section let A be a commutative ring with respect to a

nontrivial norm | · |.

Example 5.2: Let n be a positive integer and let M be the ring Mn(A) of

n × n matrices over A. We define the norm of a matrix a = (aij) ∈ M by

‖a‖ = maxij |aij |. It satisfies conditions (a), (b), and (c) of Definition 2.1. If A

is complete, then so is M . In this case suppose that A1 and A2 are complete

subrings of A. Then M1 = Mn(A1) and M2 = Mn(A2) are complete subrings

of M . If A satisfies the condition

(d′) For each a ∈ A there are a+ ∈ A1 and a− ∈ A2 with |a+|, |a−| ≤ |a|

such that a = a+ + a−.

then M satisfies condition (d) above.

Corollary 5.3: Let A, A1, and A2 be complete domains satisfying the condition

(d′) above. Let A0 be a dense subring of A and let E0 = Quot(A0). Then, for

each b ∈ GLn(A) there are b1 ∈ GLn(A1), b2 ∈ GLn(A2), b0 ∈ GLn(E0) such

that b = b1b2b0.

Proof. Since A0 is dense in A, there exists a ∈ Mn(A0) such that ‖b−1 − a‖ <

1/‖b‖. Then ‖1 − ba‖ ≤ ‖b‖ · ‖b−1 − a‖ < 1, so by Lemma 5.1 there exist

bi ∈ GLn(Ai), i = 1, 2, such that ba = b1b2. In particular, det(a) 6= 0, hence

a ∈ GLn(E0). Let b0 = a−1 ∈ GLn(E0). Then b = b1b2b0.

We apply Corollary 5.3 to the rings and fields of §4.

Theorem 5.4: Suppose that I = J ·∪ J ′ is a partition of I into nonempty sets

J and J ′, and let b ∈ GLn(RI).

(a) There exist b1 ∈ GLn(RJ ) and b2 ∈ GLn(QJ′) such that b = b1b2.
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(b) There exist b̂1 ∈ GLn(QJ) and b̂2 ∈ GLn(RJ′ ) such that b = b̂1b̂2.

Proof. We prove (a). The proof of (b) is symmetrical.

By definition RJ and RJ′ are complete rings. Given f ∈ RI , say,

f = a0 +
∑

i∈I

∑∞
k=1 aikwk

i , we let f1 = a0 +
∑

i∈J

∑∞
k=1 aikwk

i and f2 =
∑

i∈J′

∑∞
k=1 aikwk

i . Then |fi| ≤ |f |, i = 1, 2 and f = f1 + f2. This proves con-

dition (d′). Next note that A0 = D[wi | i ∈ I] is dense in RI and its quotient

field E = K(x) is contained in QJ′ . By Example 5.2 and Corollary 5.3 we have

b = b1b
′
2b0, with b1 ∈ GLn(RJ ), b′2 ∈ GLn(RJ′) ⊆ GLn(QJ′), b0 ∈ GLn(E) ⊆

GLn(QJ′). Take b2 = b′2b0.

Our matrix factorization theorem has a somewhat “asymmetrical” form (com-

pare it with the factorization theorems [HJ, Corollary 4.5] or [HV, Corollary

2.3]). However, this result is exactly the one we need in order to establish

condition (COM) of Proposition 1.8.

6. Patching of abelian groups and prime divisors

In this section we show how to patch realizations of abelian groups over complete

domains satisfying certain conditions. In the next section we apply a reduction

step that removes these conditions.

Let K be a field, and let E = K(x) be the field of rational functions over K.

Proposition 6.1: Suppose K is infinite. Let G be a finite abelian group. Then

there exists a finite Galois extension F/E with Gal(F/E) ∼= G, such that F/K

has a prime divisor of degree 1 which is unramified over E.

Proof. By [FJ, Proposition 16.3.5], E has a Galois extension F with group G

such that F is regular over K. We wish to replace F/K with an isomorphic

extension F ′/K with a prime of degree 1, such that the K-isomorphism F → F ′

maps E onto itself, and F ′ is an unramified extension of E . This is exactly

[HV, Lemma 4.5].

Lemma 6.2: Let F be a finite Galois extension of E contained in K((x)). Let

S be the integral closure of K[x] in F , and let d = [F : E]. Then S has exactly

d prime ideals lying over (x), and S/m ∼= K for each such ideal m.

Proof. Let m1, . . . ,mg be all of the prime ideals of S lying over xK[x]. Since

F ⊆ K((x)), one of them is unramified with residue field K. Since F is Galois
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over K, each of them has that property. Hence, the formula d =
∑g

i=1 eifi for

algebraic function fields of one variable implies that ei = fi = 1 for all i and

g = d.

For the rest of this section assume that K = Quot(D), where D is a complete

domain with respect to a nontrivial norm | · |. Moreover, we assume that D is

large in the following sense:

(Large) For each n ∈ N there exist b1, . . . , bn ∈ D such that bi − bj ∈ D× for

all i 6= j.

For example, every infinite field is large in this sense but Z is not. The main

significance of this condition is to enable us to construct variables for rings of

convergent power series over D (which are easy to choose in the case where D

is field, as in [HJ]).

Lemma 6.3: Let F be a finite Galois extension of E such that F/K has a prime

divisor P of degree 1 which is unramified over E. Then:

(a) There is a K-automorphism θ of E that extends to a K-embedding

θ: F → K((x)).

(b) Assume that F ⊆ K((x)). Then there exists a K-automorphism µ

of K((x)) with µ(E) = E and F ′ = µ(F ) = E(β), where β and its

conjugates over E are in D{x} and discr(irr(β, E)) ∈ (D{x})×.

Proof.

Proof of (a): See [HV, Lemma 4.2(a)].

Proof of (b): Let d = [F : E] and let S be the integral closure of K[x] in F .

Since K[[x]] is integrally closed, S ⊆ K[[x]]. By Lemma 6.2, S has d distinct

prime ideals m1, . . . ,md which lie over xK[x]. By condition (Large), there exist

b1, . . . , bd ∈ D such that bi−bj ∈ D× for all i 6= j. Since m1, . . . ,md are maximal

ideals, the Chinese Remainder Theorem gives y ∈ S with y ≡ bi mod mi for

i = 1, . . . , d. The prime ideal m = xK[[x]] ∩ S lies over xK[x]. Since F/E is

Galois, we may list the elements of Gal(F/E) as σ1, . . . , σd such that m = mσi

i ,

i = 1, . . . , d. Let yi = yσi . Then yi ≡ bi mod m, i = 1, . . . , m. In particular,

y1, . . . , yd are distinct, hence F = E(y).

Now consider the epimorphism ϕ: K[[x]] → K defined by ϕ(x) = 0 and

ϕ(a) = a for a ∈ K. Then ϕ(m) = 0, so ϕ(yi) = bi. If i 6= j, then
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ϕ(yi − yj) = bi − bj ∈ D×, hence ϕ(yi − yj) 6= 0, so (yi − yj)
−1 ∈ K[[x]].

For each c ∈ D, let µc be the K-automorphism of K((x)) given by µc(f(x)) =

f(cx). By Corollary 3.11, there exists c ∈ K× such that

µc(yi), µc((yi − yj)
−1) ∈ K + xD{x}.

Note that µc(yi)(0) = yi(0) = ϕ(yi) = bi ∈ D and

(µc((yi − yj)
−1))(0) = (yi − yj)

−1(0) = ϕ((yi − yj)
−1) = (bi − bj)

−1 ∈ D.

Therefore, µc(yi) ∈ D + xD{x} = D{x} and also µc((yi − yj)
−1) ∈ D{x}.

Set µ = µc, β = µc(y), and βi = µc(yi), i = 1 . . . , d. Then µ(F ) = E(β),

β1, . . . , βd are the conjugates of β, they belong to D{x}, and discr(irr(β, E)) =

±
∏

i6=j(βi − βj) ∈ D{x}×.

We add further assumptions on to our setup. Fix (for this section) a positive

integer k, and assume that there exist elements r, c1, . . . , ck ∈ D such that

r, ci − cj ∈ D× and
∣

∣

r
ci−cj

∣

∣ ≤ 1 for all i 6= j.

Let I = {1, 2, . . . , k} and wi = r
x−ci

for each i ∈ I. For each J ⊆ I we put,

as in Section 3, RJ = D{wi : i ∈ J}. Then RJ is contained in R = RI .

For the rest of this section assume that the norm | · | is an absolute value,

and extend it to K. Let K̂ be the completion of K with respect to | · |. Then

R is an integral domain, contained in the principal ideal domain K̂{wi : i ∈ I}

(Proposition 4.7). Let Ω = Quot(R). For each i ∈ I let

Qi = QI r{i} = (D[wj | j 6= i] r{0})−1RI r{i} and Q′
i = Q{i}

(we use the notation of Section 4). By definition QJ ⊆ QI if J ⊆ I.

Lemma 6.4: Let c be an element of D such that c − ci ∈ D×, | r
c−ci

| ≤ 1 for

each 1 ≤ i ≤ k. Consider the evaluation homomorphism ϕc: R → D defined by

w1 7→ r
c−c1

, . . . , wk 7→ r
c−ck

. Set p = w1 −
r

c−c1
∈ R. Then:

(a) Ker(ϕc) is a principal ideal of R, generated by p;

(b) the localization Rp = {a/b ∈ Ω : a ∈ R, b ∈ R r pR} is a valuation ring

of Ω.

Proof. By Remark 4.3(b), ϕc is indeed a homomorphism.

(a) Let f ∈ Ker(ϕc), so f =
∑k

i=1 fi, fi ∈ D{wi}, 1 ≤ i ≤ k. For each

1 ≤ i ≤ k let pi = p wi

w1

c−c1

c−ci
. Since wi

w1
= 1+ ci−c1

r wi and wiw1 = r
ci−c1

(wi −w1)

(Lemma 4.1),
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pi =
(

w1 −
r

c − c1

)(

1 +
ci − c1

r
wi

)c − c1

c − ci

=
(

w1 +
ci − c1

r
wiw1 −

r

c − c1
+

ci − c1

c1 − c
wi

)c − c1

c − ci

=
(

w1 + (wi − w1) −
r

c − c1
+

ci − c1

c1 − c
wi

)c − c1

c − ci

=
(

wi
c − ci

c − c1
−

r

c − c1

)c − c1

c − ci

= wi −
r

c − ci
.

In particular, pi ∈ Ker(ϕc). Since c−ci

c−c1
∈ D× and wi

w1
∈ R×, the element p

of R divides pi. Since | r
c−ci

| ≤ 1, pi is a regular element of D{wi} of pseudo

degree 1.

By Proposition 2.6(a), there exist qi ∈ D{wi} and ri ∈ D[wi] such that

fi = qipi + ri and deg(ri) < 1, so ri ∈ D.

Since f, pi ∈ Ker(ϕc), we get
∑k

i=1 ri = f −
∑k

i=1 qipi ∈ D ∩ Ker(ϕc), hence
∑k

i=1 ri = 0. Thus, p|f . Consequently, Ker(ϕc) is a principal ideal, generated

by p.

(b) Put R̂ = K̂{wi : 1 ≤ i ≤ k}. Note that p belongs to the kernel of the

evaluation homomorphism R̂ → K̂ given by w1 7→ r
c−c1

, . . . , wk 7→ r
c−ck

. Since

this is not the zero map, p is not invertible in R̂.

We show that every element f ∈ R can be uniquely written as f = png, with

n ∈ N, g ∈ R and ϕc(g) 6= 0. The only nontrivial part is to show that an

element f ∈ R is not divisible by p infinitely many times. To see that, note

that if pn|f in R for all n ∈ N, then also pn|f in R̂ for all n ∈ N — but R̂ is a

factorial ring (Proposition 4.7), and p is not in (R̂)× — a contradiction. Thus

Rp = {a/b ∈ Ω : a ∈ R, b ∈ R r pR} is a discrete valuation ring of Ω.

In the next lemma we use our asymmetrical factorization theorem to enable

the patching of Galois groups.

Lemma 6.5: Let {Fi}i∈I be fields, and let G, {Gi}i∈I be groups such that

E = (E, Fi, Qi, Ω; Gi, G)i∈I is a generalized patching data (Definition 1.1). As-

sume that for each i ∈ I we have Fi = E(βi), where βi and its conjugates over

E are in R, and discrE(irr(βi, E)) ∈ R×. Then:

(a) Condition (COM) of Section 1 holds for E .
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(b) Suppose there exists c ∈ D such that c − ci ∈ D× and | r
c−ci

| ≤ 1 for

each i ∈ I. Then the compound F ′ of E has a K-rational place ϕc such

that ϕc(x) = c.

Proof.

Proof of (a): Let S = (g | g ∈ G) be the standard basis of N = IndG
1 Ω over

Ω, and let n = |G|. For each i ∈ I we use Corollary 1.7 to choose a matrix

Bi ∈ GLn(R) and a basis Vi for Ni = IndG
Gi

FiQi over Qi such that ViBi = S.

For each J = {1, 2, . . . , l} ⊆ I, 1 ≤ l ≤ k and each i ∈ J we will find

a matrix Ai ∈ GLn(Qi) such that U = ViAi is independent of i, and A1 ∈

GLn(RI r{1}) ⊆ GLn(Q1). Then Vi is a basis for N over Q, hence so is U . For

J = I, U will also be a basis for Ni over Qi, for all i ∈ I. This will prove

(COM).

If J = {1}, take A1 as the unit matrix. Now suppose that J = {1, 2, . . . , l},

1 ≤ l < k. By induction on l we assume that for each i ∈ J there exists A′
i ∈

GLn(Qi) such that U ′ = ViA
′
i is independent of i, and that A′

1 ∈ GLn(RI r{1}).

Let r = l + 1. Then, Vr · BrB
−1
1 A′

1 = U ′ and BrB
−1
1 A′

1 ∈ GLn(R), but we

cannot guarantee that BrB
−1
1 A′

1 ∈ GLn(Qr). However, by Theorem 5.4(b)

there exist Ar ∈ GLn(Qr) and M ∈ GLn(R{r}) ⊆ GLn(Qi), i ∈ J , such that

BrB
−1
1 A′

1 = ArM . For each i ∈ J let Ai = A′
iM

−1 ∈ GLn(Qi). Note that

A1 = A′
1M

−1 ∈ GLn(RI r{1}). Let also U = U ′M−1. Then, for each i ∈ J ,

U = ViA
′
iM

−1 = ViAi. For r we have VrAr = VrBrB
−1
1 A′

1M
−1 = SB−1

1 A1 =

V1A1 = U . This finishes the induction.

Proof of (b): Let ϕc: R → D be the evaluation homomorphism w1 7→
r

c−c1
, . . . , wk 7→ r

c−ck
. By Lemma 6.4, Ker(ϕc) is a principal ideal, generated

by p = w1 −
r

c−c1
and Rp = {a/b ∈ Ω : a ∈ R, b ∈ R r pR} is a valuation ring

of Ω. The corresponding place is an extension of ϕc – for each y = α/β ∈ Rp

with ϕc(β) 6= 0 it is defined by ϕc(y) = ϕc(α)/ϕc(β), and ϕc(y) = ∞ for all

y ∈ Ω r Rp. This is a K-rational place Ω → K ∪ {∞}. Its restriction to

F ′ is a K-rational place, since K ⊆ F ′. Finally, ϕc(x) = ϕc(c1 + x − c1) =

c1 + ϕc(
1

x−c1
)−1 = c1 + ϕc(

1
r ·w1)

−1 = c1 + r · ( r
c−c1

)−1 = c1 + c− c1 = c.

Proposition 6.6: Let G be a finite group, generated by abelian subgroups

G1, . . . , Gk. Suppose there exists c ∈ D such that c−ci ∈ D× and |r/(c − ci)|≤1

for all 1 ≤ i ≤ k. Then there exists a Galois extension F/E such that
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Gal(F/E) ∼= G and F/K is a regular extension that has a prime of degree

1 unramified over E.

Proof. By condition (Large), D is infinite, and so is K. By Lemma 6.1, for each

1 ≤ i ≤ k there exists a Galois extension Fi/E with group Gi, such that Fi/K

has a prime divisor of degree 1 unramified over E.

By Remark 4.3(a) the map wi 7→ x extends to a K-isomorphism of K((wi))

onto K((x)) which maps R{i} onto D{x}. Hence by Lemma 6.3, we may

replace Fi/E by an isomorphic extension such that Fi = E(βi), where βi and its

conjugates over E belong to R{i}, and discrE(irr(βi, E)) ∈ R×
{i}. In particular,

Fi ⊆ Q′
i.

Now, E = (E, Fi, Qi, Ω; Gi, G)i∈I is a generalized patching data. Indeed,

conditions (2a), (2b), (2d) of Definition 1.1 have been established. Condition

(2c) follows from Proposition 4.9(b), and condition (2e) holds by Corollary 4.10.

By Lemma 6.5(a), condition (COM) of Proposition 1.8 holds for E . Let F ′

be the compound F ′ of E (Definition 1.9). By Proposition 1.8, Gal(F/E) ∼= G,

hence also Gal(F ′/E) ∼= G.

Choose an element a ∈ D such that 0 < |a| < mini(1, |c − ci|) (we may do

so, since | · | is nontrivial) and define dj = c + aj for all j ≥ 1. Then dj − ci =

(c − ci)(1 + aj

c−ci
). By our assumption, | aj

c−ci
| ≤ |aj | · | 1

c−ci
| ≤ |a| · | 1

c−ci
| < 1,

thus dj − ci ∈ D× for all 1 ≤ i ≤ k and j ≥ 1, by Remark 2.2(d). Moreover,

| r
dj−ci

| = | r
c+aj−ci

| ≤ | r
c−ci

| · | 1
1+aj/(c−ci)

| ≤ 1 · |(1 + aj

c−ci
)−1| = 1, again by

Remark 2.2(d).

For each j ≥ 1, Lemma 6.5(b) gives the K-rational place ϕdj
, satisfying

ϕdj
(x) = dj . Out of the infinitely many places ϕdj

only finitely many are

ramified over E.

7. Realization of groups

In this section we prove that every finite group is regularly realizable over a

field containing a complete domain.

It will be convenient to give a name to the following property.

Definition 7.1: Let K be a field, and let x be a free variable over K. We say

that K is rationaly Galois if for every finite group G there exists a Galois

extension F of K(x) with group G, such that F ⊆ K((x)) (in particular, F/K

is regular).
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Lemma 7.2: Let K be a field. If K contains a rationaly Galois field K0, then

K itself is rationaly Galois.

Proof. Let G be a finite group, and let x be a free variable over K. Since K0

is rationaly Galois, there exists a Galois extension F of K0(x) contained in

K0((x)) with group G. We have the following diagram of fields:

K0((x)) K((x))

F FK

K0(x) K(x)

K0 K

Since x is free over K, the fields K0((x)) and K are linearly disjoint over K0.

Indeed, suppose c1, . . . , cn ∈ K are linearly independent over K0, and let

f1 =
∑∞

i=m a1ix
i, . . . , fn =

∑∞
i=m anix

i ∈ K0((x)) such that
∑n

j=1 fjcj = 0.

Then
∑∞

i=m(
∑n

j=1 ajicj)x
i = 0 in K((x)), hence

∑n
j=1 ajicj = 0 for each i ≥ m,

and thus aji = 0 for all 1 ≤ j ≤ n and i ≥ m, so f1 = · · · = fn = 0.

It follows that F and K are linearly disjoint over K0, and so by the tower

property F and K(x) are linearly disjoint over K0(x). Thus F ∩K(x) = K0(x).

We have FK ⊆ K((x)), and by Galois theory

Gal(FK/K(x)) ∼= Gal(F/K0(x)) = G.

We need the following technical lemma.

Lemma 7.3: Let D be a complete domain with respect to an absolute value | · |.

Assume that there exists x ∈ D× such that |x| < 1. Let k be a positive integer.

Then there exist elements r ∈ D× and c1, c2, . . . , ck, ck+1 ∈ D such that:

(a) ci − cj ∈ D× for all 1 ≤ i < j ≤ k + 1 (In particular, condition (Large)

of Section 6 holds).

(b) | r
ci−cj

| ≤ 1 for all 1 ≤ i < j ≤ k + 1.
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Proof. Take ci = 1 + xi, r = xk+1. Then ci − cj = xi − xj = xi(1 − xj−i). By

Remark 2.2(d), this element is in D×, which proves (a). If 1 ≤ i < j ≤ k + 1,

then | r
ci−cj

| = |x|k+1| 1
xi(1−xj−i) | = |x|k+1−i ≤ 1, which proves (b).

Proposition 7.4: Let D be a complete domain with respect to a nontrivial

absolute value. Assume that there exists an element x ∈ D× such that |x| < 1.

Then K = Quot(D) is rationaly Galois.

Proof. Let E = K(x). Let G be a finite group. Then G is generated by

a finite number of abelian subgroups G1, . . . , Gk (e.g., its cyclic subgroups).

By Lemma 7.3 D satisfies condition (Large) of Section 6, and we may choose

r, c1, c2, . . . , ck, ck+1 ∈ D such that r, ci − cj ∈ D× and | r
ci−cj

| ≤ 1 for 1 ≤ i <

j ≤ k + 1. Put c = ck+1. This puts us in the setup assumed in Section 6. The

claim follows by Proposition 6.6 and Lemma 6.3(a).

Proposition 7.4 reproves the main result of [HV]:

Corollary 7.5: Let K be a complete field with respect to a nontrivial absolute

value. Then K is rationaly Galois.

Proof. Since the absolute value is nontrivial, there exists x ∈ K such that

0 < |x| < 1. In particular, x ∈ K×. Hence the assertion follows from Proposi-

tion 7.4.

Lemma 7.6: Let D be a complete domain with respect to a nontrivial ultra-

metric absolute value. Then D contains one of the following rings:

(a) the ring Zp of p-adic numbers, for some prime number p;

(b) the ring Z[[x]] of formal power series over Z;

(c) the ring F [[x]] of formal power series over some finite prime field F .

Proof. First we assume that char(D) = 0, so Z ⊆ D.

Suppose that | · | is nontrivial on Z (i.e., there exists an element x ∈ Z such

that 0 < |x| < 1). Then the absolute value on Z ⊆ D corresponds to a p-adic

valuation, for some prime number p. Since D is complete, it contains Zp.

If | · | is trivial on Z, we choose an element x ∈ D r Z with 0 < |x| < 1. Then

the valuation that corresponds to the absolute value | · | (restricted to Z[x])

is given by v(
∑d

n=0 anxn) = min(i | ai 6= 0) for each 0 6=
∑d

n=0 anxn ∈ Z[x].

Since |0| = 0 (or v(0) = ∞), x is free over Q = Quot(Z). As D is complete, it

contains the completion Z[[x]] of Z[x] with respect to this absolute value.
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Now assume that char(D) = p for some prime number p. Let F = Z/pZ ⊆ D.

Then |·| is trivial on F , and hence, by similar arguments to the ones given above,

D contains F [[x]], and x is free over F .

Lemma 7.6 enables us to reduce the proof of our main result from the case

of a general complete absolute valued domain to three specific cases. Lemma

3.14 of [Le] proves a similar reduction, from the case of a complete domain at

a prime ideal to the same three cases. Thus the result of [Le] is equivalent to

our main result, which is:

Theorem 7.7: Let D0 be a complete domain with respect to a non-trivial

absolute value. Let D be a domain containing D0. Then K = Quot(D) is

rationaly Galois.

Proof. By Lemma 7.2 and Lemma 7.6, it suffices to prove the theorem for the

the rings Zp, Fp[[x]], Z[[x]], for each prime number p. The first two cases have

complete quotient fields, hence the claim follows for them by Corollary 7.5.

Thus we may assume, without loss of generality, that D = Z[[x]].

Note that D is complete with respect to the valuation given by

v(

∞
∑

n=0

anxn) = min(i | ai 6= 0)

for each 0 6=
∑∞

n=0 anxn ∈ Z[[x]]. Unfortunately, its quotient field is not com-

plete with respect to this valuation (Example 2.3(c)), and every element of D×

is of absolute value 1, so we may not directly apply Proposition 7.4. However,

Quot(D) contains the ring Z[[x]][x−1] = {
∑∞

n=m anxn : m ∈ Z, an ∈ Z}, which

is also complete with respect to the valuation induced by D on its quotient

field (Example 2.3(d)). The element x is in (Z[[x]][x−1])× and satisfies |x| < 1.

Hence the claim follows by Proposition 7.4.
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